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Latent Variable Models

e X = observed variable
e / = |atent variable

*z ~ p(z)
* X ~ p(x|z)

A latent variable model and a generative process. Note the low-dimensional
manifold (here 2D) embedded in the high-dimensional space (here 3D)

* Factorization of the joint model
p(x,z) = p(x|z)p(2)
* Marginalization of the model

p(x) = f p(x|2)p(2)dz



Latent Variable Models

* Latent Variable Model p(x,z) = p(z)p(x | 2)

* To sample p(x, z), we have to first
* Sample p(z)
* Then sample p(x |z)

* How to learn the parameters 0 of latent variable models?
* Let’s try directly applying maximum log likelihood

max ¥;; logpe(x;) = maxXiL, log [ pe(x;, 2)dz

need many samples of z for each x; to approximate this integral when dimension is high
e Variational Inference is our best friend here, which we will describe next



Variational Inference
* Old ML learning objective: max >N log [ po(x;,z)dz

* Theorem: the log likelihood can be written as

lo x) = max z|x) log 222 4,
8Po (%) q(-|x):q(-|x)zo,fq(z|x)dz:1fQ( %) gq(ZIX)

and the maximizing distribution is given by pg (z|x)

* New ML learning objective:

max max qu(zpcl) logpe( v )

O a(-|x;)vi q (ZIXL)

* Before going through the derivation, what is the gain here?



Variational Inference

* New ML learning objective:

N
max magx Z:fq(z|x-)logpe(xi'z) dz
O aq(t|x;)vie l q (z]x;)

* If pg(z|x) is “accessible”, then we can alternate between optimizing w.r.t. 6 with
q(- |x;)’s fixed and vice versa, leading to the Expectation Maximization algorithm

* Promise: in many cases we will get closed form solutions in each step

* Else, parameterize q(- |x;) with a NN that takes x; and outputs a distribution
qe (- |x;), where ¢ contains the parameters of the NN
* Promise: the output posterior typically has a small variance => MC is a good approximation
* Finding ¢ will be done by gradient descent



Variational Inference

* New ML learning objective:

N
max max Z:fq(z|x-)logpe(xi'z) dz
O aq(t|x;)vie l q (z]x;)

* We will use VI for many latent variable models
* Mixtures of Gaussians (a.k.a. Gaussian Mixture Models) -> EM
e Probabilistic Principal Component Analysis (PPCA) -> EM
* Mixtures of PPCA -> EM
e Variational Auto-Encoders (VAE) -> VI
 Diffusion models -> VI



Variational Inference: Derivation

* Proof: Let g(z|x) be the variational distribution. Observe that

po(x,z)
po(z|x) d

*logpg(x) = [ q(z]x) logpe(x)dz = [ q(z|x)log Z

po(x.z) q(z|x)

4zl poGain) V2

_ [ po(x,z) q(z|x)
Ja@)log iy dz+ ] azilog, ¢ 5dz

Evidence Lower Bound (ELBO) KL[q(z|x) || pe(z]x)]

= [ q(z|x)log

> [ q(z|x)log Polx2) 4,

q(z|x)
* To complete the argument, it suffices to show that
min KL[q(z|x) || pe(z|x)] =0

q:q(2)20,] q(z)dz=1
* Needs to dive a bit into optimization: first-order optimality conditions



Expectation Maximization

maxElogpg(xl)—max max Zf q(z|x;) log Po (i, )

q Z| l (lel)

* Expectation Maximization alternates between two steps (k: iteration)

* E-step: ¢ (z|x;) = pg, (z]x;) maximizing w.r.t. w with 6 fixed

* M-step: Oy41 = argmaxg Yo [ q*(z|x;) logpg(x;, 2) dz
maximizing w.r.t. @ with w fixed
* Examples

* For a mixture of Gaussians, E & M steps are closed-form (next slide)

e Often E-step can be done by sampling (MCMC) and M-step can be done by optimization
(SGD)



E.g.: EM for Gaussian Mixture Model

* Consider a mixture of Gaussians pg(x) = m1pg, (X) + T,pp,(X) + -+ + Wk Pg, (X)
* 1; > 0: prior probability of drawing a point from the i-th model; Zﬁ‘zlni =1
* Po, = N (14, 2;). 0; = (4, 2;): mean and covariance of the i-th Gaussian distribution
e 0 =(04..,04, 1, ..,mT): the parameters of the mixture model

* Goal: estimate 6 from N i.i.d. samples x4, ..., Xy from pg using EM

k
. pok(xjlzj=0pgu(zi=t) _  Pok(¥i)mi
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